
1

Normalized SystemsNormalized Systems

Prof. dr. Jan Verelst

Prof. dr. Herwig Mannaert

The Business Challenge

• The Agile Organization

- Continually scans its ecosystem

- Reacts quickly to opportunities and is innovative

1

- Reacts quickly to opportunities and is innovative

• Has 2 Characteristics

- Complexity

• Multi-channel vs. single channel

• Diversify offerings/Additional services

- Change/Evolvability/Flexibility

• “These things are changing so fast it’s invention in the
hands of the owner.” (Hansen et al., 2007)

2

The ICT Challenge – Part 1

• In this complex, quickly changing environment,
Information Systems need to be:

- Very flexible

2

- Reliable (even mission-critical)

- Totally secure

- User friendly

- Portable

- Preferably affordable !

- ...

The ICT Challenge – Part 2

The Law of Increasing Complexity

Manny Lehman

3

Manny Lehman

“As an evolving program is continually changed, its complexity,
reflecting deteriorating structure, increases unless work is done

to maintain or reduce it.”

Proceedings of the IEEE, vol. 68, nr. 9, september 1980, pp. 1068.

3

The Good News - Modularity

• Very complex systems already exist, for example, in
hardware, telecommunications, space industry.

• They are based on proven engineering concepts such

4

• They are based on proven engineering concepts such
as:

- Modularity and

- Standards

Why Modularity ?

• Modularity has been the basis of Information Systems
Design since the ’60s

- Has proven its relevance in the past => no hype !

5

- And will probably play a decisive role in the future

• Independent of programming language, packages,
frameworks, even paradigms !

We are currently reaching the point where these
theoretical principles can be applied at a new

level, resulting in large-scale, flexible IS!

4

Modules

• ”A module is a part of a system or program. A module:

- Has an interface, consisting of:
• the name of the module, which describes the

function/responsibility of the module, and which is used to call

6

function/responsibility of the module, and which is used to call
the module.

• the (input-)parameters of the module

• the return-value of the module

- Contains a list of instructions
• data (variables, constants, data structures...)

• processes (functions, procedures, calculations...)”

Doug Mc Ilroy

7

“expect families of routines to be constructed on rational principles so
that families fit together as building blocks. In short, [the user]

should be able safely to regard components as black boxes.”

McIlroy, Mass Produced Software Components,
1968 NATO Conference on Software Engineering, Garmisch, Germany.

5

Modules - Coupling

• Coupling is a measure of the dependencies
between modules

8

Modules - Cohesion

• Cohesion is a measure of how strongly
the elements in a module are related

9

• Good design=

Low coupling and high cohesion!

6

Example: Minimize Coupling !

10

Example: Enterprise Service Bus

11

Impact = N Impact = 1

Source: http://nl.wikipedia.org/wiki/Enterprise_Service_Bus

7

The Problem

• Limited, unsystematic application of ‘good’ design

- Technical difficulties

- Project Management difficulties

12

- Project Management difficulties

• Different opinions about ‘good’ design

- “Low coupling” is too vague !

- “Information hiding” was formulated by Parnas in
1972, but still needs to be refined

- Philippe Kruchten (2005): “We haven’t found the
fundamental laws in software like in other engineering
disciplines”

The Solution

• Digging for the fundamentals of modularity

• Introducing Systems Theoretic Stability
- “…which requires that a bounded set of those

13

- “…which requires that a bounded set of those
changes results in a bounded amount of impacts
to system primitives.”

- Impact N Combinatorial Effect !

• Resulting in:
- Clear Principles on Right and Wrong

- Systematic application by reusing Patterns

8

Definition Normalized Systems

• “Normalized systems (NS) are information
systems that are stable with respect to a
defined set of anticipated changes.”

14

defined set of anticipated changes.”

- Anticipated Changes
• “An additional data field.

• An additional data element.

• An additional action element.

• An additional implementation of an action element.

• An additional action in a workflow element.

• An additional workflow element.

• An additional connector.

• An additional trigger.”

Four Theorems/Principles for NS

• Identifying Combinatorial Effects (Impact = N)

- Separation of Concerns
• Theorem 1: “An action entity can only contain a single task.”

- Data Version Transparency

15

- Data Version Transparency
• Theorem 2: “Data entities that are received as input or produced

as output by action entities, need to exhibit version
transparency.”

- Action Version Transparency
• Theorem 3: “Action entities that are called by other action

entities, need to exhibit version transparency.”

- Separation of States
• Theorem 4: “The calling of an action entity by another action

entity needs to exhibit state keeping.”

9

Four Theorems/Principles for NS

• Systems contain many Combinatorial Effects !

- Even when newly built

- Ever increasing during maintenance

16

- Ever increasing during maintenance

• Explains Lehman

• Inhibits McIlroy

Building NS

• NS can be built from stable elements, such as:

- Data elements

- Action elements

- Workflow elements

17

- Workflow elements

- Connector elements

- Trigger elements

• Every element is described by a design pattern, guaranteeing
its stability. This results in proven evolvability.

• Information Systems are composed of Elements (~Mc Ilroy),
and every element builds on other elements.

• Every design pattern is executable, and can be expanded
automatically.

10

Building NS

• Characteristics
- Limited Complexity per module

- Evolvable/Flexible

18

- Evolvable/Flexible
• Anticipated changes

• Changes in packages, frameworks, programming languages...

- Performance

- Testability

- Documentation

- …

The IT vision
Competences

and
Training

19

NS-SOA/
Domain-specific

standards

Agile and
Traditional

IT Management

11

Conclusions

• Agile Company
- The Challenges are Complexity and Evolvability
- The Answers are Modularity and Standardization

• High-quality IT: advanced modular structures of proven evolvability are
needed to realize McIlroy and withstand Lehman !

20

needed to realize McIlroy and withstand Lehman !
• Low-quality IT: vague and unsystematic approaches to evolvability will be

replaced by systematic approaches !
• Progress has been made, but no magical solution !

- Normalized Systems
• Principles are constraints on modular structures.
• Stable Information Systems are composed of Elements, complying at all

times with the Principles.
• Management: Architectures enable co-evolution of business and ICT,

thereby realizing alignment.
• Competences: Crucial Challenge.

Conclusions

• What’s next for Modularity ?

- Modular Organisations
• Control Complexity and Evolvability at business level

21

• Control Complexity and Evolvability at business level
using Modularity

- Modular Products and Services

- Modular Business Processes

- Modular Organisational Structures

- …

12

Conclusions - What can you do ?

• Awareness

22

• Testing violations

• Build software

Not all IT is a commodity !

Thank you for your attention !

23

Thank you for your attention !

For more information:
{jan.verelst, herwig.mannaert}@ua.ac.be

